Stem Cell Research Archives - OOTHY™

Archive

Category Archives for "Stem Cell Research"

Stem Cell Treatment for Traumatic Brain Injury (TBI)

A traumatic brain injury (TBI) is characterized by a disruption in the normal function of the brain due to an injury following a trauma, which can potentially cause severe physical, cognitive, and emotional impairment. In the U.S. over 2.5 million people suffer brain injuries each year and over 50,000 of them end in death and approximately 80,000 suffer permanent disability.

Research is currently underway with several clinical trials exploring stem cells and the effects they have on damage to the brain. According to NCBI, mesenchymal stem cells (also known as MSCs) have immunosuppressive properties that reduce inflammation in injured tissue. The amazing thing about most stem cells is their ability to hone in on the site of damage. Most stem cells can be administered systemically (intravenous) and they will migrate to the site of the brain injury. Once there, the stem cells will receive chemical “communications” from the cells of the damaged tissue which will cause the stem cells to differentiate into the cells of the damaged tissue to repair said tissue.

Mesenchymal Stem Cells for Brain Damage

As an adult, the most common way to get Mesenchymal Stem Cells (MSCs) is from your fat (adipose tissue) using a minimally invasive liposuction procedure your fat (adipose tissue) performed by a reputable clinic. The other method also has high efficacy is through from bone marrow and requires a little more invasive procedure where the cells are extracted from the bony area of your hip region.

For children, most researchers agree the best option for the type of MSCs that are already pre-wired for neurological and brain functions are the adult stem cells found in dental pulp. For kids losing baby teeth or wisdom teeth, collecting dental stem cells from the pulp of their tooth is a simple, non-invasive, non-controversial and potentially life-saving and life-enhancing.

Why Mesenchymal Stem Cells?

Mesenchymal stem cells can differentiate or “mature into” many different cell types including; osteoblasts (bone cells), chondrocytes (cells that makeup cartilage), myocytes (muscle cells), adipocytes (fat cells), neurons and recently described beta cells (cells found in the pancreas that synthesize insulin).

Are Kids Teeth Better than Adult Teeth?

Yes! The cells harvested from baby teeth, in particular, are at their optimum because they are young, vibrant, healthy, and full of functionality. By storing young dental stem cells now, they can be accessed in the future to take advantage of numerous age-related therapies in development.

Your Own Stem Cells are the Best Stem Cells.

Why? Your own stem cells are unique to you and highly valuable because at some point soon people will be using their own stem cells as the natural way to combat many health conditions — even aging itself.

Regenerative Medicine is an Emerging Field Involving Stem Cell Therapy.

Regenerative Medicine employs methods to restore the function of damaged tissue and organs. With all the emerging potential in tissue engineering applications using mesenchymal stem cells, a child’s loose baby tooth can provide first-rate mesenchymal stem cells that can be used in the future for cellular-therapy based applications. Mesenchymal stem cells have shown amazing promise in the potential treatment of traumatic brain injuries, Parkinson’s and Alzheimer’s disease, Type I diabetes, heart attack, stroke, Multiple Sclerosis, ALS, spinal injury, west syndrome and several others.

To read more about the studies and clinical trials, click on links below:
https://www.ncbi.nlm.nih.gov/pubmed/…
https://clinicaltrials.gov/ct2/results…

References:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5316525/

Stem Cell Treatment for Autism Reviews

As parents, we will do anything to help our children. Finding the right treatment for a child with Autism Spectrum Disorder ranks right at the top.

Autism Spectrum Disorder (ASD) affects 1 in 59 children.  Parents are told treatments can help, but that this condition can’t be cured. Because there are more than 200,000 U.S. cases per year, multiple treatment plans are offered, and it’s difficult to navigate through all of the options.  

Stem Cell Therapy for ASD

One of the most recent treatment options being discussed is stem cell therapy. Although the therapies in the US are still experimental, there have been some promising results. Since no cure currently exists for autism spectrum disorder, the goal of treatment is to maximize a child’s ability to function by reducing ASD symptoms and supporting development.

The big question on everyone’s mind is, will stem cell therapy help treat autism?

Well, the answer isn’t a definitive one, and reviews are hard to come by because treatments in the U.S. are not FDA approved, experimental or not allowed at all. To help gather all of the latest information, we put together a list of well-reviewed stem cell clinics, docs, and resources.

The current therapies mostly utilize stem cells from birth tissue that’s high in mesenchymal stem cells (MSCs). But because most families don’t have birth tissue (cord blood, tissue, and placenta), some families are finding it helpful to store their own child’s stem cells non-invasively when their child loses a tooth (dental stem cells).

The Difference in Cord Blood vs. Cord Tissue, Placenta and Dental Stem Cells

Stem cells from cord blood are commonly used in the treatment of childhood blood diseases such as leukemia, sickle cell anemia, and lymphoma, to help replenish the patient’s blood supply with healthy new cells. These stem cells cannot be duplicated, and experts say due to the low volume of blood collected, they may only be able to treat a child until approximately ten years of age.  

Mesenchymal stem cells (MSCs) from birth tissue, placenta and teeth are more versatile as they can be used for treatments other than blood disorders and they can be duplicated for a lifetime of use. This type of cell has the potential to be transformed into other cells including cardiac, muscle, bone, cartilage, nerve, and fat tissue.

The mesenchymal stem cells found in teeth are the most widely researched type of stem cell. Based on the research so far, the best use for dental stem cells seems to be focused on neurological disorders and disease of the brain. This makes sense since the stem cells from teeth are found in our head.

Current studies offer hope for mental illness, diseases of the brain like autism, dementia, Alzheimer’s and neurological conditions like cerebral palsy, MS, and Parkinson’s.

In addition to treating conditions, MSCs are being used for other regenerative, preventative, and anti-aging benefits.

What Can Stem Cells Do For ASD?

Researchers hope to improve brain development with stem cell therapy.

Here are some anticipated improvements in autistic children after stem cell therapy:

  • Better tolerance of foods and improved digestion
  • More adequate behavior and social skills
  • Less or no fear of loud noises, strangers and bright colors
  • Improved verbal skills, speech
  • Improvement of writing skills
  • Improved self-care skills
  • Improved attention span, memory, and concentration

Because dental stem cells are in close proximity to the brain, they are being used for disorders related to the brain. Stem cells are thought to replenish damaged brain cells, reduce inflammation, increase immunity and blood flow so that the body can heal itself. There are many studies being conducted in order to better understand the benefits stem cells provide our bodies.  Once the scientific community has a better understanding of stem cells it is hoped that a whole new medical world will be opened up.

Although we are in the early stage of dental stem cell research, the data is promising. As always, do your stem cell research.  You know what the best course of action is for your child and your family. We all want to do everything we can to get the absolute best results, and when you do the research, the answers fall into place.

Resources, Reviews, Stem Cell Clinics, and Doctors

We posted an article recently about the work being done with Dental Stem Cells and the Tooth Fairy led by Dr. Alysson Muotri of California Institute for Regenerative Medicine. Here are the links for more information about the research and to Dr. Muotri’s Lab.

Link to the video review of the research:
https://www.cirm.ca.gov/our-progress/video/reversing-autism-lab-help-stem-cells-and-tooth-fairy

https://www.cirm.ca.gov/our-progress/video/reversing-autism-lab-help-stem-cells-and-tooth-fairy

Link to basic info about baby teeth and stem cells:
https://www.sentinelsource.com/parent_express/family_wellness/baby-teeth-basics-from-birth-to-the-tooth-fairy/article_9bcffa3c-24c6-11e9-8a44-33e96f4c374e.html

Link to Dr. Muotri’s laboratory:
https://medschool.ucsd.edu/som/pediatrics/research/labs/muotri-lab/Pages/default.aspx

Other notable research is being spearheaded by Dr. Joanne Kurtzberg, MD Duke Center for Autism and Brain Development.
More info can be found here: https://autismcenter.duke.edu/.

Another study was done using umbilical cord blood and children with autism at Duke University:
https://www.cnn.com/2017/04/05/health/autism-cord-blood-stem-cells-duke-study/index.html

To stay in the loop with current and upcoming clinical trials based in the United States visit:
https://clinicaltrials.gov/ct2/search

Are their Stem Cell Treatments for Autism Available Now?

Yes. Although the options are limited, there are a few reputable clinics that we follow closely. We have reviewed dozens of outcomes and the feedback from the parents have been very positive.

Dr. Riordan – The Stem Cell Institute (Panama) can be found here:
https://www.cellmedicine.com/stem-cell-therapy-for-autism/

Dr. Eduardo and Dr. Freddy – World Stem Cells Clinic (Mexico) can found here: https://worldstemcellsclinic.com/


References:

  1. Buonfiglioli, A, Kübler, R, Missall, R, De Jong, R, Chan, S, Haage, V et al.. A microglia-containing cerebral organoid model to study early life immune challenges. Brain Behav Immun. 2025;123 :1127-1146. doi: 10.1016/j.bbi.2024.11.008. PubMed PMID:39500415 .
  2. Sun, S, Luo, S, Chen, J, Zhang, O, Wu, Q, Zeng, N et al.. Human umbilical cord-derived mesenchymal stem cells alleviate valproate-induced immune stress and social deficiency in rats. Front Psychiatry. 2024;15 :1431689. doi: 10.3389/fpsyt.2024.1431689. PubMed PMID:39238940 PubMed Central PMC11375615.
  3. Wikarska, A, Roszak, K, Roszek, K. Mesenchymal Stem Cells and Purinergic Signaling in Autism Spectrum Disorder: Bridging the Gap between Cell-Based Strategies and Neuro-Immune Modulation. Biomedicines. 2024;12 (6):. doi: 10.3390/biomedicines12061310. PubMed PMID:38927517 PubMed Central PMC11201695.
  4. Qin, Q, Shan, Z, Xing, L, Jiang, Y, Li, M, Fan, L et al.. Synergistic effect of mesenchymal stem cell-derived extracellular vesicle and miR-137 alleviates autism-like behaviors by modulating the NF-κB pathway. J Transl Med. 2024;22 (1):446. doi: 10.1186/s12967-024-05257-w. PubMed PMID:38741170 PubMed Central PMC11089771.
  5. Darwish, M, El Hajj, R, Khayat, L, Alaaeddine, N. Stem Cell Secretions as a Potential Therapeutic Agent for Autism Spectrum Disorder: A Narrative Review. Stem Cell Rev Rep. 2024;20 (5):1252-1272. doi: 10.1007/s12015-024-10724-4. PubMed PMID:38630359 .
  6. Noshadian, M, Ragerdi Kashani, I, Asadi-Golshan, R, Zarini, D, Ghafari, N, Zahedi, E et al.. Benefits of bone marrow mesenchymal stem cells compared to their conditioned medium in valproic acid-induced autism in rats. Mol Biol Rep. 2024;51 (1):353. doi: 10.1007/s11033-024-09292-0. PubMed PMID:38401030 .
  7. Fu, Y, Zhang, YL, Liu, RQ, Xu, MM, Xie, JL, Zhang, XL et al.. Exosome lncRNA IFNG-AS1 derived from mesenchymal stem cells of human adipose ameliorates neurogenesis and ASD-like behavior in BTBR mice. J Nanobiotechnology. 2024;22 (1):66. doi: 10.1186/s12951-024-02338-2. PubMed PMID:38368393 PubMed Central PMC10874555.
  8. Chen, W, Ren, Q, Zhou, J, Liu, W. Mesenchymal Stem Cell-Induced Neuroprotection in Pediatric Neurological Diseases: Recent Update of Underlying Mechanisms and Clinical Utility. Appl Biochem Biotechnol. 2024;196 (9):5843-5858. doi: 10.1007/s12010-023-04752-y. PubMed PMID:38261236 .
  9. Jingyi, L, Lin, W, Yuan, C, Lingling, Z, Qianqian, J, Anlong, X et al.. Intravenous transplantation of bone marrow-derived mesenchymal stem cells improved behavioral deficits and altered fecal microbiota composition of BTBR mice. Life Sci. 2024;336 :122330. doi: 10.1016/j.lfs.2023.122330. PubMed PMID:38065352 .
  10. Yokoyama, S. Genetic polymorphisms of bone marrow stromal cell antigen-1 (BST-1/CD157): implications for immune/inflammatory dysfunction in neuropsychiatric disorders. Front Immunol. 2023;14 :1197265. doi: 10.3389/fimmu.2023.1197265. PubMed PMID:37313401 PubMed Central PMC10258321.
  11. Nabetani, M, Mukai, T, Taguchi, A. Cell Therapies for Autism Spectrum Disorder Based on New Pathophysiology: A Review. Cell Transplant. 2023;32 :9636897231163217. doi: 10.1177/09636897231163217. PubMed PMID:36999673 PubMed Central PMC10069005.
  12. Shamim, S, Khan, N, Greene, DL, Habiba, UE, Umer, A. The promise of autologous and allogeneic cellular therapies in the clinical trials of autism spectrum disorder. Regen Med. 2023;18 (4):347-361. doi: 10.2217/rme-2022-0176. PubMed PMID:36935631 .
  13. Tsuji, M, Mukai, T, Sato, Y, Azuma, Y, Yamamoto, S, Cayetanot, F et al.. Umbilical cord-derived mesenchymal stromal cell therapy to prevent the development of neurodevelopmental disorders related to low birth weight. Sci Rep. 2023;13 (1):3841. doi: 10.1038/s41598-023-30817-3. PubMed PMID:36882440 PubMed Central PMC9992354.
  14. Barmada, A, Sharan, J, Band, N, Prodromos, C. Serious Adverse Events Have Not Been Reported with Spinal Intrathecal Injection of Mesenchymal Stem Cells: A Systematic Review. Curr Stem Cell Res Ther. 2023;18 (6):829-833. doi: 10.2174/1574888X17666220817125324. PubMed PMID:35980065 .
  15. Zhao, L, Li, Y, Kou, X, Chen, B, Cao, J, Li, J et al.. Stem Cells from Human Exfoliated Deciduous Teeth Ameliorate Autistic-Like Behaviors of SHANK3 Mutant Beagle Dogs. Stem Cells Transl Med. 2022;11 (7):778-789. doi: 10.1093/stcltm/szac028. PubMed PMID:35608372 PubMed Central PMC9299510.
  16. Petriv, T, Tatarchuk, M, Skuratov, A, Rybachuk, O, Tsymbaliuk, V. Safety of Combined Autistic Spectrum Disorders Treatment with Umbilical Cord Mesenchymal Stem Cells Application: Clinical Investigation. Stem Cells Transl Med. 2021;10 (S1):S10. doi: 10.1002/sct3.13017. PubMed PMID:35599373 PubMed Central PMC8449582.
  17. Langlie, J, Mittal, R, Finberg, A, Bencie, NB, Mittal, J, Omidian, H et al.. Unraveling pathological mechanisms in neurological disorders: the impact of cell-based and organoid models. Neural Regen Res. 2022;17 (10):2131-2140. doi: 10.4103/1673-5374.335836. PubMed PMID:35259819 PubMed Central PMC9083150.
  18. Fazeli, Z, Ghaderian, SMH, Najmabadi, H, Omrani, MD. Understanding the Molecular Basis of Fragile X Syndrome Using Differentiated Mesenchymal Stem Cells. Iran J Child Neurol. 2022;16 (1):85-95. doi: 10.22037/ijcn.v15i4.22070. PubMed PMID:35222660 PubMed Central PMC8753000.
  19. Kaur, K, Hadas, Y, Kurian, AA, Żak, MM, Yoo, J, Mahmood, A et al.. Direct reprogramming induces vascular regeneration post muscle ischemic injury. Mol Ther. 2021;29 (10):3042-3058. doi: 10.1016/j.ymthe.2021.07.014. PubMed PMID:34332145 PubMed Central PMC8531157.
  20. Yeo-Teh, NSL, Tang, BL. Moral obligations in conducting stem cell-based therapy trials for autism spectrum disorder. J Med Ethics. 2022;48 (5):343-348. doi: 10.1136/medethics-2020-107106. PubMed PMID:33858947 .
  21. Harrell, CR, Volarevic, A, Djonov, V, Volarevic, V. Mesenchymal Stem Cell-Derived Exosomes as New Remedy for the Treatment of Neurocognitive Disorders. Int J Mol Sci. 2021;22 (3):. doi: 10.3390/ijms22031433. PubMed PMID:33535376 PubMed Central PMC7867043.
  22. Sharifzadeh, N, Ghasemi, A, Tavakol Afshari, J, Moharari, F, Soltanifar, A, Talaei, A et al.. Intrathecal autologous bone marrow stem cell therapy in children with autism: A randomized controlled trial. Asia Pac Psychiatry. 2021;13 (2):e12445. doi: 10.1111/appy.12445. PubMed PMID:33150703 .
  23. Liang, Y, Duan, L, Xu, X, Li, X, Liu, M, Chen, H et al.. Mesenchymal Stem Cell-Derived Exosomes for Treatment of Autism Spectrum Disorder. ACS Appl Bio Mater. 2020;3 (9):6384-6393. doi: 10.1021/acsabm.0c00831. PubMed PMID:35021769 .
  24. Perets, N, Oron, O, Herman, S, Elliott, E, Offen, D. Exosomes derived from mesenchymal stem cells improved core symptoms of genetically modified mouse model of autism Shank3B. Mol Autism. 2020;11 (1):65. doi: 10.1186/s13229-020-00366-x. PubMed PMID:32807217 PubMed Central PMC7433169.
  25. Sun, JM, Dawson, G, Franz, L, Howard, J, McLaughlin, C, Kistler, B et al.. Infusion of human umbilical cord tissue mesenchymal stromal cells in children with autism spectrum disorder. Stem Cells Transl Med. 2020;9 (10):1137-1146. doi: 10.1002/sctm.19-0434. PubMed PMID:32531111 PubMed Central PMC7519773.
Search PubMed
>